If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-28x+30=0
a = 2; b = -28; c = +30;
Δ = b2-4ac
Δ = -282-4·2·30
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{34}}{2*2}=\frac{28-4\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{34}}{2*2}=\frac{28+4\sqrt{34}}{4} $
| F(x)=8•7x | | 1/2m+1=3/4 | | 6x/3=3x-9 | | 4y/2=14 | | 1/5a+2=28/15 | | f(3)=-35 | | -4y-1=3y-6 | | 8x-5=22-4x | | 1313x+1=5–x | | 1/6n-3=4 | | 12k+12k=56-12 | | (9-3x)/4=(2x-4)/3 | | 6x+8=5x+24 | | 9+9r+9r^2=27 | | -5+2c=c | | $250=0.04s | | 1/4(4x+15)=24/1*4/1 | | 4^x=8½×⅛⁴ | | (1)/(4)(4x+15)=(24)/(1)*(4)/(1) | | 40/r=13-r | | -5/6k-7.5=7.5 | | 50+12p=24 | | x*x=1.232050807568877 | | 1|4(4x+15)=24|1*4|1 | | 144d2−96d+16=0 | | x*x=1.23 | | 2x+6=7×-14 | | 1/9p+2=6 | | 8-(3w-3)=-5(w-3)-(4w-3) | | 144d^2−96d=−16 | | 3.3x+2500=10.89+50x | | (x+3)×(x-3)=55 |